/* * MPI version with the matrix subdivided by "lines". */ #include #include #include #include #include "../config/config.h" #include "../utils/utils.h" #define TAG_BORDER 0 #define TAG_MATRIX 1 double *compute_jacobi(int n, double init_value, double threshold, borders b, int *iterations); int rank; int numprocs; int main(int argc, char* argv[]) { int n; double init_value, threshold; double north, south, east, west; borders b; int config_loaded; configuration config; double *x; double startwtime = 0.0, endwtime; int iterations; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &numprocs); if (rank == 0) { config_loaded = load_config(&config); if (config_loaded != 0) { MPI_Abort(MPI_COMM_WORLD, 1); } n = config.n; threshold = config.threshold; init_value = config.init_value; north = config.north; south = config.south; east = config.east; west = config.west; } MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&init_value, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&threshold, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&north, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&south, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&east, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&west, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); b.north = north; b.south = south; b.east = east; b.west = west; if (rank == 0) { startwtime = MPI_Wtime(); } x = compute_jacobi(n, init_value, threshold, b, &iterations); if (rank == 0) { endwtime = MPI_Wtime(); printf("Wall clock time: %fs\n", endwtime - startwtime); printf("Iterations: %d\n", iterations); /* print_sa_matrix(x, n + 2, n + 2); */ } destroy_sa_matrix(x); MPI_Finalize(); return 0; } double *compute_jacobi(int n, double init_value, double threshold, borders b, int *iterations) { double *complete_x; double *x; double max_diff, global_max_diff, new_x; int i, j; int rows, rows_to_transmit; int receive_pos; MPI_Status status; if (rank == 0) { rows = n - (n / numprocs) * (numprocs - 1); } else { rows = n / numprocs; } LOG(printf("[Process %d/%d] rows: %d\n", rank, numprocs, rows)); /* LOG(printf("[Process %d/%d] initializing matrix\n", rank, numprocs)); */ /* Initialize the matrix */ x = create_sa_matrix(rows + 2, n + 2); for (i = 0; i < rows + 2; i++) { for (j = 1; j <= n; j++) { x[sa_index(n + 2, i, j)] = init_value; } } /* Initialize boundary regions */ for (i = 0; i < rows + 2; i++) { x[sa_index(n + 2, i, 0)] = b.west; x[sa_index(n + 2, i, n + 1)] = b.east; } if (rank == 0) { for (i = 1; i <= n + 1; i++) { x[sa_index(n + 2, 0, i)] = b.north; } } if (rank == numprocs - 1){ for (i = 1; i < n + 1; i++) { x[sa_index(n + 2, rows + 1, i)] = b.south; } } /* LOG(printf("[Process %d/%d] matrix initialized\n", rank, numprocs)); */ /* Iterative refinement of x until values converge */ *iterations = 0; do { max_diff = 0; global_max_diff = 0; for (i = 1; i <= rows; i++) { for (j = 1; j <= n; j++) { new_x = 0.25 * (x[sa_index(n + 2, i - 1, j)] + x[sa_index(n + 2, i, j + 1)] + x[sa_index(n + 2, i + 1, j)] + x[sa_index(n + 2, i, j - 1)]); max_diff = (double) fmax(max_diff, fabs(new_x - x[sa_index(n + 2, i, j)])); x[sa_index(n + 2, i, j)] = new_x; } } if (rank % 2 == 0) { if (rank != numprocs - 1) { // Send and receive south border MPI_Send(&x[sa_index(n + 2, rows, 0)], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD); MPI_Recv(&x[sa_index(n + 2, rows + 1, 0)], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD, &status); } if (rank != 0) { // Send and receive north border MPI_Send(&x[sa_index(n + 2, 1, 0)], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD); MPI_Recv(&x[sa_index(n + 2, 0, 0)], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD, &status); } } else { // Receive and send north border MPI_Recv(&x[sa_index(n + 2, 0, 0)], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD, &status); MPI_Send(&x[sa_index(n + 2, 1, 0)], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD); if (rank != numprocs - 1) { // Receive and send south border MPI_Recv(&x[sa_index(n + 2, rows + 1, 0)], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD, &status); MPI_Send(&x[sa_index(n + 2, rows, 0)], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD); } } /* LOG(printf("[Process %d/%d] max_diff: %f\n", rank, numprocs, max_diff)); */ MPI_Allreduce(&max_diff, &global_max_diff, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD); /* LOG(printf("[Process %d/%d] global_max_diff: %f\n", rank, numprocs, global_max_diff)); */ (*iterations)++; } while (global_max_diff > threshold); if (rank == 0) { complete_x = create_sa_matrix(n + 2, n + 2); memcpy(complete_x, x, (rows + 1) * (n + 2) * sizeof(double)); /* rows + 2 if rank == numprocs - 1 */ rows_to_transmit = n / numprocs; receive_pos = rows + 1; for (i = 1; i < numprocs; i++) { if (i == numprocs - 1) { rows_to_transmit++; } MPI_Recv(&complete_x[sa_index(n + 2, receive_pos, 0)], rows_to_transmit * (n + 2), MPI_DOUBLE, i, TAG_MATRIX, MPI_COMM_WORLD, &status); receive_pos += n / numprocs; } } else { complete_x = NULL; rows_to_transmit = rows; if (rank == numprocs - 1) { rows_to_transmit++; } MPI_Send(&x[sa_index(n + 2, 1, 0)], rows_to_transmit * (n + 2), MPI_DOUBLE, 0, TAG_MATRIX, MPI_COMM_WORLD); } return complete_x; }