/* * MPI version with the matrix subdivided by "lines". */ #include #include #include #include "../config/config.h" #define TAG_BORDER 0 typedef struct borders { double north; double east; double south; double west; } borders; void compute_jacobi(int n, double init_value, double threshold, borders b); void print_matrix(int rows, int cols, double x[rows][cols]); int main(int argc, char* argv[]) { int rank, numprocs; int n; double init_value, threshold; double north, south, east, west; borders b; int config_loaded; configuration config; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &numprocs); if (rank == 0) { config_loaded = load_config(&config); if (config_loaded != 0) { MPI_Abort(MPI_COMM_WORLD, 1); } n = config.n; threshold = config.threshold; init_value = config.init_value; north = config.north; south = config.south; east = config.east; west = config.west; } MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&init_value, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&threshold, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&north, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&south, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&east, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&west, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); b.north = north; b.south = south; b.east = east; b.west = west; int rows; if (rank == 0) { rows = n - (n / numprocs) * (numprocs - 1); } else { rows = n / numprocs; } double x[rows + 2][n + 2]; double max_diff, global_max_diff, new_x; int i, j; MPI_Status status; /* Initialize the matrix */ for (i = 0; i < rows + 2; i++) { for (j = 1; j <= n; j++) { x[i][j] = init_value; } } /* Initialize boundary regions */ for (i = 0; i < rows + 2; i++) { x[i][0] = b.west; x[i][n + 1] = b.east; } if (rank == 0) { for (i = 1; i <= n + 1; i++) { x[0][i] = b.north; } } else if (rank == numprocs - 1){ for (i = 1; i < n + 1; i++) { x[rows + 1][i] = b.south; } } /* Iterative refinement of x until values converge */ do { max_diff = 0; global_max_diff = 0; for (i = 1; i <= rows; i++) { for (j = 1; j <= n; j++) { new_x = 0.25 * (x[i - 1][j] + x[i][j + 1] + x[i + 1][j] + x[i][j - 1]); max_diff = (double) fmax(max_diff, fabs(new_x - x[i][j])); x[i][j] = new_x; } } if (rank % 2 == 0) { if (rank != numprocs - 1) { // Send and receive south border MPI_Send(&x[rows][0], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD); MPI_Recv(&x[rows + 1][0], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD, &status); } if (rank != 0) { // Send and receive north border MPI_Send(&x[1][0], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD); MPI_Recv(&x[0][0], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD, &status); } } else { // Receive and send north border MPI_Recv(&x[0][0], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD, &status); MPI_Send(&x[1][0], n + 2, MPI_DOUBLE, rank - 1, TAG_BORDER, MPI_COMM_WORLD); if (rank != numprocs - 1) { // Receive and send south border MPI_Recv(&x[rows + 1][0], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD, &status); MPI_Send(&x[rows][0], n + 2, MPI_DOUBLE, rank + 1, TAG_BORDER, MPI_COMM_WORLD); } } MPI_Allreduce(&max_diff, &global_max_diff, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD); } while (global_max_diff > threshold); MPI_Finalize(); return 0; } void print_matrix(int rows, int cols, double x[rows][cols]) { int i, j; for (i = 0; i < rows; i++) { for (j = 0; j < cols; j++) { printf("%f\t", x[i][j]); } printf("\n"); } fflush(stdout); }